ICASE REPORT

1/0 BUFFER PERFORMANCE IN A VIRTUAL MEMORY SYSTEM

Stephen W. Sherman

. Richard S. Brice

Report Number 76-2
February 2, 1976

(NASA-CR-185730) I/0 BUFFER PERFO |
RMANCE TN -71
A VIRTUAL MEMORY SYSTEM (ICASE) 26 p NB9-71335

Unclas
00/60 0224345
INSTITUTE FOR COMPUTER APPLICATIONS
IN SCIENCE AND ENGINEERING
Operated by the

UNIVERSITIES SPACE RESEARCH ASSOCIATION

; . at

§ _ . o NASA'S LANGLEY RESEARCH CENTER

Hampton, Virginia

I1/0 BUFFER PERFORMANCE IN A VIRTUAL MEMORY SYSTEM

Stephen ¥. Sherman*

Institute for Computer Applications in Science and Engineering

Richard S. Brice
Department of Civil, Mechanical and Environmental Engineering

George Washington University

ABSTRACT

In this study we construct a simulator of a data base management system
running in a virtual memory environment. We use the simulator to in-
vestigate the value of using an I/0 buffer in this environment. The
simulator is driven by trace data obtained with a software probe.

The simulator is validated and is used to verify a theoretical model
whick predicts paging and disk access rates produced by use of an I/0
buffer in a virtual memory environment. Results from a multi-factor
set of simulation experiments are analyzed. The factors include three
page replacement algorithms, four buffer management algorithms, five
virtual buffer sizes, three values for real memory and six well known
and widely differing distributions for creating sequences of requests

to the simulated data base management system.

Acknowledgement

We wish to thank Professor Jim Browne for suggesting this area of
research and Professors BRrowne and Arden for their comments on our
initial research.

* On leave from the University of Houston

This paper was prepared as a result of work performed under NASA Contract
No. NAS1-14101 while the first author was in residence at ICASE, NASA
Langley Research Center, Hampton, VA 23665. The work of the second
author was supported by NASA Grant NGR-09-010-078. _

I. INTRODUCTION

Computer programs that are I/O bound, such as data base
management systems, often use part of primary memory as a
storage area or buffer for data from secondary memory. If we
assume the overhead to manage the data in primary memory is
negligible and the buffer consumes otherwise unrequired primary
memory, then the use of buffers can only improve performance
due to the faster access to primary than to secondary memory.
In a virtual memory system, the user is typically unable to
control the assignment of his user space between primary and
secondary memory. The use of a buffer in a virtual memory system
may cause a decrease in performance due to competition for pri-
mary memory between the program and the buffer. Performance
can also be degraded by a phenomenon known as double paging.
The dynamics of double paging was characterized by Goldberg and
Hassinger [1] as the running of a paged operating system under
a paged virtual machine monitor. We define double paging as the
management of buffer storage under the control of a paged virtual
memory environment.

We refer to the I/O buffers in a program running on a virtual
memory system as virtual buffers. In a previous examination [2] of
the use of virtual buffers, we conducted a series of statistically

designed and analyzed experiments to study the effects of four

factors on performance. The factors were virtual buffer
replacement algorithm, virtual buffer size, primary memory

size and paging replacement algorithm. This series of 240
experiments was conducted by running a data base management

program on a dedicated system and measuring the performance

as we varied the factors. The data base management program
executed a predetermined and unvarying script. The environment in
which these experiments were conducted is similar to the controlled
laboratory environment described in [3]. We will refer to these

experiments as the test bed experiments.

The distribution of I/O requests is a function of the
data base content and structure, the data base management sys-
tem and the script. It is impossible to vary the distribution
of data base requests in a controlled manner in the test bed
experiments. In this study we vary the distribution of
data base requests in a controlled environment through simula-
tion to extend our previous results and investigate the effects
of the distribution of data base requests on the performance
metrics used in our previous study. Simulation is the only
technique available for extending our previous investigations to
include controlled distributions of requests.

Our simulator uses trace data as defined in [4] from a modified
test bed experiment to simulate the paging effects of the operating
system and data base management system. The trace data is also
used to determine when to request information from the data
base. The location of the information in the data base can be
obtained from the trace data or can be generated in a controlled
manner. The simulator is validated by comparing its performance

to the test bed experiments. The simulator is also used to

verify a theoretical model developed in the previous study.
A set of simulation experiments are then run which repeat the
test bed experiments for six different data base request

distributions.

We compare various performance metrics from our test bed
experiments to our simulation experiments. Many observed trends
in the performance data of the test bed experiments occur again
in the performance analysis of our simulation experiments for
various distributions. We relate the differences in the perfor-
mance data to the characteristics of the distributions. The
simulation experiments show that our test bed results are not
unique due to peculiarities in the original data base request
distribution. The differences in the performance of the simula-
tion experiments and the test bed results are comprehensible and
reasonable and generate confidence that the simulator is a good

tool to investigate further extensions of our test bed experiments.

II. ENVIRONMENT AND THE COLLECTION OF TRACE DATA

We collected the trace data for the simulation program
by instrumenting an operating system with a software probe.
The application program, a prototype data base management (DBM)
system,was run on a dedicated machine with the software probe
collecting significant events on tape for later analysis.
The DBM system executed a script of data base requests. The
script completely traversed the data base and caused reading,

insertion and deletion of data as it was executed.

The DBM system organizes data in a tree structufed format.
Requests are made in a series of interactive primitive functions
that perform elementary operations upon the data base. The data,
names and pointers are encoded in 40 word segments. These 40
word segments can be target segments or links to target
segments and will be referred to as data base segments. One
physical record on disk contains eleven data base segments
(440 words in 1 record) and information is read from the disk
in physical records. Even though our record size is smaller
than the page size (512 words) we store each record on a different
virtual buffer page to avoid physical page boundary overlap. The
DBM virtual buffer size is fixed when the DBM program is initiated
and can consume up to 32K words of virtual memory. The data
base accessed by the script is a 7 level tree structure and
consists primarily of integer and floating point numbers describing

the gecmetry of an aircraft structure.

The DBM system was executed on a multi-user disk operating
system running on a PRIME 300 minicomputer. The PRIME 300 can
support up to 256K words (16 bits per word) of memory when
utilizing its virtual memory capability. Our PRIME 300 has 64K
words of memory and uses 2 moving head disks for paging and
file storage. Each user is giveﬂ a virtual address space of
64K words. A more detailed description of the environment can be
found in [2].

The software probe is located in a page that the system
has locked in memory and can not interact with the paging pro-
cess. The probe records events that cause a significant change

in the system. Examples of these events are: 1) a user issues

an SVC (service request); 2) a request is made to a peripheral
device; and 3) a reference bit has been set. Every virtual
page has a reference bit associated with it. A reference to
a page whose reference bit is not set causes the reference bit
to be set. All reference bits are reset whenever a page fault
occurs.

Our trace data consists entirely of the reference bit
events. The data collected by the probe at the same time the
reference bit was set contains information sufficient to deduce:
1) whether a page fault occurred, 2) the virtual page and real
page being referenced, 3) the owner of the virtual page,
4) the time and 5) the virtual page and real page being re-
placed if a page fault occurred. The oriyin of the DBM virtual buffer
was fixed at a particular location so that references to the virtual
buffer could be identified in the trace data. The size of the
virtual buffer is chosen large enough to contain the entire data
base on the run that gathered the trace data. Although gathering
the data needed for our simulator does not require that the en-
tire data base fit in the virtual buffer, it is more convenient to
collect the data in this configuration. The choice of the vir-
tual buffer manager does not affect the trace data since no records
are replaced in the virtual buffer.

The run that gathered the trace data was configured to use
the least amount of real memory possible (32Kj so that the page
faults and therefore the number of reference bit events would be
as high as possible. We used the standard first in - first out

(FIFO) page replacement algorithm in gathering the trace data.

A total of 52,341 reference bit events were generated of which
6716 were accompanied by page faults. Although most strings of
reference events between page faults were quite short, there was
an occasional long string of reference events between page faults.
The FIFO page replacement algorithm was modified to clear
the reference bits of all the virtual pages if 10 consecutive
reference events occurred without a page fault. This eliminates
the long strings of reference bit events. The trace data
which was used in all the simulations and validation experiments
was collected with the modified FIFO page replacement algorithm.
A total of 372,287 reference events were generated of which 6709
were accompanied by page faults. Instrumentation of the DBM
showed that there were 13,996 references to data base segments.
These references would cause 1075 disk accesses if only a one page
‘virtual buffer were available since the data contained 1075 record
transitions. The trace data had 13,831 references to data base

segments distributed over a sequence of 1071 record transitions.

ITI. DESCRIPTION OF THE SIMULATION MODEL

The simulation model consists of an initializer, virtual
buffer manager, page replacement algorithm and performance
reporter. The program is initialized with a real memory size
and virtual buffer size. Various paging and buffer tables are then
initialized. The trace data consists of the reference string. Each
element of the string is read by the model and treated as a virtual
page address. If the virtual page address is not a virtual

buffer reference, it is passed to the page replacement algorithm.

6

If the virtual page address is a virtual buffer reference, the
buffer manager must insure that the corresponding record is

in the virtual buffer. If the record is in the virtual buffer,
the virtual page address of the virtual buffer in which the
record is located is passed to the page replacement algorithm.
If the record is not in the virtual buffer, the buffer manager
selects a record to be replaced and puts the new record in its
place. The virtual page address of the virtual buffer in which
the new record is placed is passed to the page replacement
algorithm.

The page replacement algorithm compares the virtual page
address with the virtual pages in real memory. If the virtual
page is found in real memory, the virtual page reference is
noted and the next virtual page address is requested from the
trace data. If the referenced virtual page is not found in
real memory, the page replacement algorithm removes a virtual
page from real memory and replaces it with the referenced virtual
page. The next virtual page address is requested from the trace

data. The flow is summarized in Figure I.

When the trace data is exhausted the performance reporter
presents the statistics gathered during the run. These
statistics include; number of page faults, average number of
real pages used by the virtual buffer (average buffer size),
number of times a reference to a record in the virtual buffer
caused a page fault (reference faults), the number of times
the virtual buffer manager caused a page fault when it tried
to replace a record (double page fault), and the number of

times the virtual buffer manager read in a record (I/0 access).

IVv. VALIDATION OF THE MODEL

The simulation model described in the previous section
is extremely simple. The trace data does not contain all the
virtual page references although similar data has been used
successfully to simulate paging in the CP-67 simulator [3].

To validate the simulator, we simulate the 240 test bed ex-
periments that we had previously run. We use 3 page replace-
ment algorithms; first in-first out (FIFO), random (RAND) and
second chance [6] (SCH). The SCH algorithm is also known as
the Multics algorithm [7] and the use bit algorithm [8]. We
simulate 4 virtual buffer managers; FIFO, RAND, SCH and least
recently used (LRU). We choose virtual buffer sizes of 1, 5,
10, 15 and 20 pages. We set the total amount of real memory
available to the system to 36K, 40K, 44K and 48K.

The four factors, virtual buffer size, real memory size,
virtual buffer manager and page replacement algorithm have five,
four, four and three levels of interest respectively. We
. simulated the complete 5 by 4 by 4 by 3 factorial experiment
consisting of all 240 combinations.

To compare the simulated factorial experiments and the
test bed factorial experiments we use 5 primary measures and 5
secondary measures of system performance. The 5 primary measures
are numbers of page faults, reference faults, double page faults,
1/0 accesses and average buffer size. The 5 secondary measures are;
number of times the reference bit is set without causing a

page fault (reference sets), the average number of page faults

outside the virtual buffer between page faults Within the
virtual buffer (mean), the standard deviation for the number
of page faults outside the virtual buffer between page faults
within the virtual buffer (standard deviation), the number of
times a page in the virtual buffer replaces a page not in the
buffer (BRP) and the number of times a page in the virtual
buffer is replaced by a page not in the buffer (PRB).

With the exception of I/0 accesses, relative errors between
corresponding measures are computed for all 240 experiments.

We define the relative error to be 100* ABS [(SIMULATED MEASURE -
TEST BED MEASURE)/ABS (TEST BED MEASURE)].

The average values of the relative errors for all of the
primary measures except I/0O accesses are shown in Figure II. The
average values of the relative errors for the secondary measures
are displayed in Figure III. A comparison of I/O accesses is
presented separately in Table I since the I/0 accesses are in-
variant with respect to the real memory size and paging algorithm.
A sample set of data from the test bed and the simulation is
presented in Table II.

Some of the average relative errors for the smaller virtual
buffer sizes are rather large. An examination of Table II shows
that the value of a particular measure may range over several
orders of magnitude. The relative errors of small numbers tend
to be large in our comparisons due primarily to differences in
initial conditions of the test bed and simulation experiments.
For example differences in reference faults in Table II cause relative pei

centage errors of 75%, 31%, 18%, 6%, and 3% for virtual buffer

0

sizes 1 through 20. The change in magnitudes of the values
for most of the measures presented in Figures II and III account
for their high average relative error in the first few buffer
sizes. The average relative errors at virtual buffer sizes 10,
15, and 20 give a more accurate account of the close correspondence
between simulated experiments and the test bed experiments. The
mean and standard deviation measures have high relative errors
in the cases with small virtual buffer sizes because they are
calculated with only a few samples (number samples = reference
faults + double page faults) when the virtual buffers are small.
The simulation of the test bed experiments yields perfor-
mance results that are generally in good agreement with the test
bed results. All of the known trends in the test bed performance
are observed in the performance data of the simulation experiments.
The close correspondence of the simulation results and the test
bed results for all 240 different experiments demonstrates the

validity of the simulator.

V. VERIFICATION OF THE THEORETICAL MODEL

In our previous paper [2], we developed a very simple theo-
retical model which predicts total I/0 per data base request (T)
in the virtual buffer as a function of virtual buffer size in
pages (N), pages of real storage available for the virtual buffer (M)
and number of pages in the data base (D). The model assumes that
random data base requests are uniformly distributed, uses the RAND
page replacement algorithm and the RAND buffer manager. Total I/0

in the virtual buffer is given by

10

T(M,N,D) = (1- %) page faults + (1-%) I1/0 accesses
for 1 < M < N < D.

The test bed experiments were unable to verify the accuracy
of the model since we could not control the distribution of data
base requests. However, we did verify that the trends predicted
by the model were followed in the test bed experiments.

With the simulator, we are able to investigate the combination
of RAND page replacement, RAND buffer manager and a uniform dis-
tribution of random requests for data base segments. Competition
for real memory from the program and system and the amount of real
memory available are not explicitly included in the theoretical
model although they are significant factors in the simulator and
the trace data. The simulator uses a global paging algorithm and
does not allocate a fixed amount of real memory to the virtual
buffer. The performance measure, average buffer size, computed by
the simulator is used as M in the model. We contend that using
average buffer size in place of M in the theoretical model should
reflect the value for the amount of real memory in the virtual
buffer and compensate for the competition for the real memory
between the buffer and the program.

Table III contains the results of the performance of the
simulator and the predictions of the model using the average
buffer sizes calculated by the simulator for M. The close agree-
ment in the table values indicates that the observed average buffer
size does reflect the value for the amount of real memory in the
virtual buffer and competition for real memory between the program

and the buffer.

11

VI. SIMULATION EXPERIMENTS

The simulation experiments are very similar to the validation
experiments. The same 3 page replacement algorithms, 4 buffer
management algorithms and 5 virtual buffer sizes are simulated.

The three largest real memory sizes are simulated. We decided not
to simulate the 36K real memory size because our test bed experi-
ments indicated the performance trends were very similar to the
experiments with the 40K memory size.

For these experiments, the simulator uses the same trace data
used in the validation experiments. Data base access requests are
replaced by requests generated from one of six distributions. The
data base is still treated as though it was 45 pages long and consiste
of 495 data base segments. Three of the six data base request dis-
tributions generate string oriented requests. The other distri-
butions are well known and we picked these distributions because
they differed significantly from our original trace data distribitions
More realistic models for data base reference strings [9] can easily
be adapted as input for our simulator.

Three of our distributions are the random (RA1), binomial (BI1)
and poisson (PO1). A sample from 1 to 495 is generated from one of
these three distributions whenever the trace data indicates that
an access to the data base is required. The sample is translated
into a disk record from 1 to 45 and the buffer manager is presented
with the request. The string oriented distributions are generated
by treating the 495 data base segments as if they were in a binary

tree with the root node being data segment 1, the 2 nodes attached

12

to data segment 1 are nodes 2 and 3, and continuing down%nine

levels where the nodes are numbered 256 to 495. We generate a
string of 9 data base segment references from this tree by gen-
erating a number from 256 to 495 by sampling from the random (RAS),
binomial (BIS) or poisson (POS) distributions. The sample and

the 8 nodes that must be traversed to reach that sample constitute
our 9 string sequence of data segments. The string of 9 data
segments maps into 6 or 7 distinct disk records and they are issued
in sequence to the buffer manager during this request for a data base
access and the next 8 requests.

The five experimental factors, virtual buffer size, real
memory size, buffer management algorithm, page replacement algo-
rithm and distribution of data base requests have 5, 3, 4, 3 and
6 levels of interest respectively. There are 1080 possible com-

binations and all of the combinations are simulated.

VII. RESULTS OF SIMULATION EXPERIMENTS

It is impossible to present the mass of data generated by
all of the simulation experiments. Representative figures and
tables will be provided in order to omit congestion. Whenever
possible our technique in presenting the simulation results will
be to use the test bed results in [2] as a focus for comparison.
In our analysis we distinguish between I/O in the virtual buffer

and I/0 resulting from program paging. The buffer I/0 is further

classified as I/0 accesses, double page faults and reference faults.
Total I/0 in the virtual buffer will be discussed after examination
of its components. Finally, the total cost of executing the script

will be compared to the test bed results.

13

The I/O access for the test bed results are presented in
Table I. The better performance of the RAND buffer manager at
virtual buffer sizes 10 and 15 was an unexpected result.

An analysis of the original data base reference string distribution
indicates that strings of references of length 10 to 15 often
separated references to frequently referenced records. While the
RAND buffer manager might allow the frequently referenced records
to remain in the buffer, the other buffer managers were forced to
replace them with the sequence.

The simulation experiments support our explanation. fn the
experiments with the RA1l, RO1l, and BI1 distributions, the RAND buf-
fer manager consistently requires more I/0 accesses than the other
buffer managers.

In the simulation experiments using the string oriented dis-
tribution, the RAND buffer manager needs fewer I/O accesses than any
of the other buffer managers when the virtual buffer size is 5.

At virtual buffer sizes 10, 15, and 20 the RAND buffer manager
requires a relatively large number of I/0O accesses compared to the
others. In our string oriented distributions, the string always
required 6 or 7 record transitions which is long enough to make the
RAND buffer manger advantageous only at a virtual buffer size of 5.
The I/0 accesses for the POl and POS distributions are shown in
Table IV.

Double page faults have previously been defined as the number
of times the virtual buffer manger causes a page fault when it tries
to replace a record. The double paging rate is the number of double

page faults divided by the number of times the virtual buffer manager

14

{

,
i

require$ an I/0O access. The test bed experiments show that the RAND
buffer manager consistently has the lowest double paging rate and

that the lowest double paging rate occurs when the RAND buffer manager
is combined with the RAND paging algorithm.

The simulation resutts again confirm the test bed results for
the double paging rate. The double paging rates of the FIFO, SCH,
and LRU algorithms are barely distinguishable in the test bed experi-
ments. Figure III illustrates that different distributions can cause
a variance in the double paging rate of those previously indistinguish-
able algorithms.

The double paging rate for the RAl distribution is similar to
the test bed results. The largest variance of double paging rate
among buffer managers is caused by the POS distribution. The PO1
and RAS distribution are second and third largest in this respect.
When the virtual buffers are large, the BI1 and BIS distribitions
do not have enough I/O accesses to produce meaningful numerical
comparison of their double paging rates with those of the other
distributions.

Referenée faults were defined as the faults caused by
references to data contained in the virtual buffer.

The reference paging'rate is defined as the number of reference
faults divided by the number of record transitions minus the number
of I/0 requests to the disk. In the test bed experiments, the RAND
buffer manager has a higher reference paging rate than the other
buffer managers. As the real memory size increases the difference
disappears. The buffer managers have similar properties when the
RAS and RA1l distributions are used. Figure V illustrates the higher

double paging rate for the RAND buffer manager when the RA1

15

distribution is used. The double paging rate of the RAND buffer
manager remains noticeably higher than the rest when the comparisoné
are made at higher memory sizes. The buffer managers using the POl
and POS algorithms have approximately the same reference paging rate
as illustrated in Figure VI for the POl distribution using 44X of
memory. The similarity in reference paging rate does not change

as the real memory size is increased using the POl and POS distri-

butions.

The number of page faults in the virtual buffer (reference
faults + double paging faults) is only slightly affected by the
buffer manager in the test bed experiments with the RAND buffer
manager incurring fewer page faults in the buffer than the
others. The range of values for page faults in the virtual
buffer are similar and the buffer managers behave similarly
for the test bed experiments and the simulation with the BIS
distribution. The simulations of the other distributions almost
doubles the range of values for the number of page faults in
the buffer. The RAND buffer manager often incurs fewer buffer
page faults than the other buffer managers. The percent differ-
ence in buffer faults between the RAND buffer manager and the
other buffer managers is an increasing function of the total
number of buffer faults for a given memory size.

Total I/O in the virtual buffer consists of three components:
reference faults, double paging faults and I/0 accesses. In
our analysis of total I/O we do not distinguish between disk
accesses and page faults. The theoretical model predicts that
total I/O can decrease as the virtual buffer size is increased.

For all test bed experiments and for all simulation experiments,

~-16-

total I/0 in the buffer reaches a minimum when the virtual
buffer size is 20 pages. The total I/O in the buffer for the

RA1, Bl11l, and POl distributions decreases monotonically with

increasing virtual buffer size as jillustrated in Figure VII.
In all the test bed experiments and for the simulation experi-
ments with string oriented distributions, the total buffer

I/0 for all buffer managers except RAND is an increasing func-
tion for small virtual buffer sizes and a decreasing function
when the buffers are large. The monotonically decreasing be-

havior of the RAND buffer manager is shown in Figure VII using

the RAS distribution.

The average buffer size, real memory in the virtual buffer,
increases as the virtual buffer size increases in the test bed
and simulation experiments. This increase causes more page
faults in the program and the system. The increase in program
page faults must be combined with any decrease in total I/O
in the buffer to produce a total cost of executing the script
(execution cost). The execution costs closely parallel the
results on total I/0. Those distributions whose total I/O
decreases monotonically have execution costs that are similar
but do not decrease as quickly. The string oriented distri-
butions and test bed experiments show increases in execution
cost corresponding to the increasing total I/O values at small

virtual buffer sizes.

In all the simulation experiments the execution cost is
lJower at the largest virtual buffer size than when only one

virtual buffer is used. The test bed experiments usually have

-17-

a slightly higher eéecution cost when using the largest virtuél
buffer size.

The distribution of data base requests in the test bed
experiments have longer sequences of strings and cause almost
an order of magnitude fewer record transitions than the simula-
tion distributions. The longer dtrings cause total I/O to con-
tinue to increase for a larger range of virtual buffer size
in the test bed experiment. The lack of record transitions
prohibits large decreases in the cost of execution from the
reduction of I/0 accesses.

In an effort to analyze the variation in results due to
double paging, we apply analysis of variance to all the per-
formance measures described in this section. ¥For most of the
performance measures, either the virtual buffer size or the
main memory size cause a significant amount of the variation.
Similar results concerning the influence of main memory are
reported in [10]. 1If the double paging phenomenon were signi-
ficant we would expect the interaction of the paging algorithm
and buffer manager to be significant compared to their indi-
vidual effects on the variance. We have not found the inter-
action to be a significant factor in the simulation experiments

or the test bed experiments.

VIII. CONCLUSION

We constructed a simulation model to extend our previous
results on the use of virtual buffers. The model used trace
data gathered from a real system. Although a complete refer-

ence string was not used, we showed through our validation

-18-

that the partial reference string was sufficient to vali-
date a compfehensive set of 240 experiments using 3 different
paging algorithms,

The simulation model was also used with a uniform distri-
bution of random data base requests to verify a theoretical
model. The verification showed that the average buffer size
performance metric calculated by the simulator compensated
for the interference effects of program paging in the virtual
buffer.

An extensive set of simulation experiments was conducted
to compare their performance with the performance of a set
of test bed experiments conducted in a laboratory environment.

The test bed experiments all used the same data base manager

and script.

Simulation was required in order to vary the distribution
of data base requests in a controlled environment. The test
bed experiments and the simulation results for string oriented
distributions had a similar effect on the 1I/0 accesses generated
by the RAND buffer manager. The double paging rates, reference
paging rates and number of page faults in the buffer
were comparable for the simulation experiments and the test
bed experiments. The total I/O in the virtual buffer
is similar»for the simulations using string oriented distribu-
tions and the test bed experiments. The execution costs of the
simulation studies are less than the cost in the test bed ex-
periment, but the differences are understandable when certain
properties of the simulated distributions are considered.

The analysis of variance showed no significant interaction of

19

the paging algorithm and buffer manager over a number of metrics
in both the simulation results and test bed results,

The general agreement between the simulation results and
the test bed results reinforces our previous studies. The
differences that appeared were reasonable and justifiable.

The simulator supported our previous identification of those
performance factors which were dependent on the script. We
gained confidence in the simulator as a tool for further ex-

perimentation in the use of virtual buffers.

20

BIBLIOGRAPHY

1. Goldberg, R. and R. Hassinger, "The Double Paging Anomaly,"
Proc. 1974 National Computer Conference, Chicago, May 6-8,
1974.

2. Sherman, S. W. and R. S. Brice, "Experiments Concerning
Buffer Management in a Virtual Memory System," ICASE
Report 75-20, Langley Research Center, Hampton, Va., Oct.
1975.

3. Schwetman, H. D. and J. C. Browne, "An Experimental Study
of Computer System Performance," Proc. National ACM
Conference, Boston, Mass., August 1972, pp. 693-703.

4. Sherman, S. W. and J. C. Browne, "Trace-Driven Modeling:
Review and Overview,'" Symposium on the Simulation of Compu-
ter Systems, Gaithersburg, MD, June 1973, pp. 201-208.

5. Boksenbaum, C.:;S. Greenberg, and C. Tillman, "Simulation
of CP-67," IBM Report 320-2093, June, 1973.

6. Hoare, C. A. R., and R. M. McKeag, "A Survey of Store
Management Techniques," A.P.I.C. Studies in Data Process-
ing, No. 9, Academic Press, 1972.

7. Corbato F. J., "A Paging Experiment with the Multics
System," In Honor of P. M. Morse, M.I.T. Press, Cambridge,
Mass., 1969, pp. 217-228.

8. Grit, D. H. and R. Y. Kain, "An Analysis of a Use Bit Page
Replacement Algorithm," Proceedings ACM Annual Conference,
1975.

9. Easton, M. C., "Model for Interactive Data Base Reference

String," IBM Report RC 5050, Sept. 1974.

10. Tsao, R. F.; L. W. Comeau, and B. H. Margolin, "A Multi-
Factor Paging Experiment I, II," Statistical Computer
Performance Evaluation, edited by Walter Freiberger,
Academic Press, pp. 103-158.

21

.- P ¢ a .
BOINSBIW AIWPUOOI® 9Y] 10; JOIIO OATINIGI oIwaeay

111 eandyy

9Z1p 233jng TeNIITA

oL
+
1
-]
=02 X
X
” —_——
\ [
\ 3
\ 1 YOLVINNIS FHL
// v X8 VLvQ FOVHI J0 ONISSIIOHd
Toy 1
\ .
8108 90URIBJRL triiceesn e \ . ¢ zunons
dUg e—e— i, N
i ——————. L J
QOY39IAGp PIVpUEIS T . a20v143y
TIVTASD Pavp : o
UMW —— o — — — “ 39vd
. TVALYIA sak
-+ A .
o v 103138 4didng
TVALEIA NI
L G a¥oo3y
+ ONINIVLINOD
— 0vd §1
s3ansvouw ALiewild @Yl IO JOJIP SATISIII IBuleay
11 eandyy : -
PZYQ Jaing [ENIIFA 834 aiadv1d
0z 414 ot ~ m ﬂ on W31408 oN g oL
t * ——— i - RHOWAN N1 IVOLNIA NI quoody
P e e e e e - ———— — — — — ————
T S3A | qILSdTH auooay S1 103138
Trm—— - aovd SI
e]
s i sux
T~ -+
———
~ ¥34dng
. ON TVOALYIA NI
: Y4 1
(-]
402
E
k]
FONIYIL3Y
T 30Vd TVaLYIA
[]
A
1
3
.
Tov
L]
¥
83Ine] eduagajex ~ T T T
eitne; aded eyqnop -+ ——
L]
Ba[nu; adwd ccieeeerens .. .
8ZI® 18])NQq 8IWIIAE — —— — - — “
- 09 ”
v

“SUoTINQYIISTP TI4 PUT SVH 043 Yl

¥0¥ Buisn wyiyzodys 3uyded Q414 943 I0) I87)nq eyl uy O/I T¥IOL

IIA @andtg
8Z18 IIFIng 1WNILIA

St o1 $

L ol

ma) } } 0007
- M T t
-
<+ 000€
-+ 0008
-t
s1a8vuwN 1033Nng
4 000€Y
‘UOTINQIIISTP Tvy 243 YITA AJOWam TESI JO Nby PUW wUlIjION(E
- Suyssd QJld Syl Suisn siafvUuvW I@IING 84l JO 93vx Buidvd eduerejed
A ®sxndyy
9z J97JN@ (WNIITA
114 st ot S L3
3 } } 1 i, H
- L T AR o
-+
+%0°
-+
T80
“tot’
sia8suwy J0j3ng
rd
/
[

meve

LN R L NN]

EONoOLEnOS

ER IR X L LN N

oo e

o/1

=0ow d~

*uo0fINQIIISIP 10d 943 QIIA AIowam [8AX JO Myh pus wy3jIofte
BuiBed 0414 2u3 Juyisn siafeuem aajyjng a2yl jo ajes Sujfed adwaxazay

1A dandryg
9zYg JBIINg [ENIITA

ot St [0 s 1
3 + 1 4)

+ T +

ny1
HOS
O4Id rrrerreeeees
ANYY e ra—- —

s3adwuey J33yng

‘fiowsm 1ol jo Yoy Buisn wyljiod31w BuyBed 0414 dYI J0; 9IWI 3uidwd arqnoq

Al ®and¥d
ezTg Jazjng T¥NIATA

0z st ot S 1

~ 0T°

aNvd —— ——.—

/
i / (Y3 7 SO
torIngriisia
sod S — — — — —
j ny1

suwq3iyI031y 205)n8

= %0

O e ate

U= OHOC OO

[aRal

LSNP E RN)

Qo20~w

BUFFER MANAGERS

VIRTUAL BUFFER TEST BED SIMULATION
SIzE___ LRU SCH _RAND FIFO _LRU _ SCH _ RAND* FIFO

! w015 107 1095 075 ([1on 107y en

5 88 11 7Te 194 || ver 794 719 197

10 684 687 550 688 || 687 696 534 690

15 a8 a2 270 a3 || 4 a5 283 437

20 93 9% 15 103 9 100 165 106

TABLE 1

Comparison of the number of I/0 accesses generated by the buffer
managers in the test bed and simulation experiments.

*RAND values are averages taken from 4 different seeds in the random
number generator.

Yirtual
Buffer

Size

1
H
10
15
20

10
15
20

36K
59
395
930
1582
2507

1/0 ACCESSES

Simulator Model
Memory Sizes (13831 data
3 ek s wob
13528 13832 13528 13529 13623

12249 12322 12292 12299 12294

10781 10817 10734 10730 10758

9276 9235 9152 9248 9222

7739 7790 7731 7798 7634

PAGE FAULTS IN THE ¥IQTUAL BUFFER

Similator Model
Using the M corresponding
to the memory size

MK Ak 4K 3c 4ok e eek

2?7 [3 0 o 0 0

205 58 15 353 193 55 27

542 253 55 824 538 248 41

1043 546 211 1623 958 561 193

1622 1048 476 2464 1611 1002 4_62
TABLE I:I

Sirj\ulatorlulues for RAND paging algor{thm. RAND buffer manager, and
uniform distribution compared to predictic-< of the theoretical model.

24

Page faults

Average buff size

Reference faults

Double page faults

Reference sets

Hean

Standard deviation

B8RP

PR8

YINTUAL BUFFER SIZE

263
237

1.00

5

662
576

4.84
4.82

13
9

42
39

11632
10198

10.84
10.69

10.27
12.04

50
a3

45
38

1
1

TABLE II

10

1276
1262

8.84
8.86

49
131
18

8052
na

6.04
6.12
1.06
1.43
158
156

150
148

1768
1798

11.45
n.z2

129
137

194
195

22464
21313

4.44
4.40

6.42
1.06

270
266

261
257

20

1932
1900

11.98
n.8

294
286

84
22824
22154

4.10
.07

6.85
6.83

318
310

308
301

Sampte set of measures for validation with test bed data followed
by simulated data for RAND paging algorittm, FIFO buffer manager and

44K of real memory.

VIRTUAL BUFFER

BUFFER_MANAGERS

PO Distribution

POS Distribution

F1FO SCH LRU RAND = FIFQ SCH LRY RAND

1 12500 12500 12500 12500 [9236 9236 9236 9236

5 8074 7938 7778 8096 9226 9226 923 6721

10 4372 3870 3493 4415 | 3728 32 2665 3462

15 2246 1587 1382 2270 I 1769 1309 1153 1635

20 I 1097 653 554 1142 “ 776 499 N 187
TABLE 1V

The 1/0 accesses generated by the buffer managers 1n simulation
experiments using the POl and POS distribution.

